General characteristics

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Overall reaction of photosynthesis

In chemical terms photosynthesis is a light-energized oxidation–reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H2O), producing oxygen gas (O2), hydrogen ions (H+), and electrons. Most of the removed electrons and hydrogen ions ultimately are transferred to carbon dioxide (CO2), which is reduced to organic products. Other electrons and hydrogen ions are used to reduce nitrate and sulfate to amino and sulfhydryl groups in amino acids, which are the building blocks of proteins. In most green cells, carbohydrates—especially starch and the sugar sucrose—are the major direct organic products of photosynthesis. The overall reaction in which carbohydrates are formed during plant photosynthesis can be indicated by the following equation:

This equation is merely a summary statement, for the process of photosynthesis actually involves numerous reactions catalyzed by enzymes (organic catalysts). These reactions occur in two stages: the “light” reactions, consisting of photochemical (i.e., light-capturing) reactions; and the “dark” reactions, comprising chemical reactions controlled by enzymes. During the light reactions, the energy of light is absorbed and used to drive a series of electron transfers, resulting in the synthesis of ATP and the electron-donor-reduced nicotine adenine dinucleotide phosphate (NADPH). During the dark reactions, the ATP and NADPH formed in the light-capturing reactions are used to reduce carbon dioxide to organic carbon compounds. This assimilation of inorganic carbon into organic compounds is called carbon fixation.